Potreningowa suplementacja – okno anaboliczne

 Suplementacja

Niestety nie da się ominąć kilku zdań wyjaśnienia.
Wszystkich procesów nie będę opisywał (bo nie wiem) – ale opisze w kilku zdaniach sytuacje jaka ma miejsce w naszym ciele (w naszych mięśniach) na i tuz po zakończeniu treningu (nie tylko siłowego).

Tak wiec wróciliśmy z ciężkiej sesji treningowej – jaka sytuacja ma miejsce w naszym organizmie?
-po pierwsze opróżnione mamy zasoby glikogenu – według niektórych źródeł zasoby glikogenu mogą zostać opróżnione średnio o 30-40% podczas kilku serii (!) (o tym niżej)
-po drugie nasilony katabolizm – rozpad białek mięsniowych
-po trzecie negatywny bilans azotowy – więcej białka jest niszczonych niż nasz organizm jest w stanie stworzyć

wiec pierwsza sprawa jaka musimy się zając tuz po treningu jest:
-uzupełnienie glikogenu (mięsniowego jak i wątrobowego)
-zatrzymanie katabolizmu (rozpad białek)
-nasilenie anabolizmu (synteza białek)

jeżeli nic nie będziemy z tym faktem robić zwykle ciało samo zacznie ‘się naprawiać’ aby po ok.24-48h katabolizm zrówna się anabolizmowi.
Ale ten proces możemy przyspieszyć – przyspieszyć stosując odpowiednia suplementacje potreningowa .

Tak wiec musimy sprostać 3 stanom jakie mają miejsce:
1)uzupełnić glikogen
2)zatrzymać katabolizm
3)nasilić anabolizm

1) to da sie latwo uczynic spozywajac odpowiednią ilość węglowodanow
ile?
to juz zalezy indywidualnie
tak samo zalezy od celu
od typu budowy itd.
ale srednio powinno sie spozywac zaraz po treningu ok.0,8-1,2g/kgmc prostych weglowodanów (np.glukoza)
Tak – 1,2g/kgmc – co daje np. mi 100kilogramowemu osobnikowi 120g cukrów prostych.

Oczywiscie to jest najbardziej optymalna ilosc – ale dla wielu extremalna.
Duzo zalezy od diety calodziennej – od ilosci spozytych weglowodanow – czy tez od wykonanego treningu – a konczac na ‘przyswajalnosci’ indywidualnej weglowodanow.
Jedni czuja sie dobrze – inni juz nie za bardzo.

Jedno jest pewne – weglowodany trzeba spozywac!

Kolejne za to takie ze nic tak nie powoduje wyrzutu insuliny jak weglowodany (po czesci wiemy ze nie do konca,a moze nie tylko weglowodany,ale trzymajmy sie tego ze na pewno weglowdany i na pewno o duzym IG).
Tak wiec ten wyrzut insuliny – jak w wiekszosci dnia nie do konca jest pozadany – jak wiadomo insulina miedzy innymi hamuje lipolize a nasila lipogeneze – tak w tym okresie jest tym czyms na czym nam zalezy!

Insulina jest najsilniejszym hormonem anabolicznym – ale w okresie potreningowym jest silnym antykatabolikiem.

Wiec nie dosc ze dzieki niej jest mozliwe dostarczenie glukozy do miesni – bo ona jest kluczem – to rowniez dzieki niej (jej wysokiemy poziomowi tuz po treningu) hamuje katabolizm.

2) jak i 3) – mozna temu zaradzic spozywajac bialko – i tu podobnie jak powyzej – szybko wchanialne bialko (np.izolat)

wiele osob bedzie pisalo ze nie ma znaczenia jakie bialko – no niestety ma.
czas trawienie izolatu zaczyna sie ok 20min po spozyciu
kiedy wpc okolo 2h
kazeina trawi sie okolo 7h

wiec czy istostny jest rodzaj bialka?
tak – kazeina odpada w tym momencie – najlpeiej sprawdza sie hydrolizat,WPI,mieszanka bialek – konczac na WPC

Jedno jest pewne – trezba spozyc odpwiedni ilosc bialka aby zatrzymac katabolizm.

Ile?
Ok 0,3-0,4g/kgmc ciala powinno zrobic robote.

Dobrym zamiennikiem czy tez dodatkiem do shake potreningowego moga byc BCAA/czy tez sama leucyna.
BCAA nasilaja synteze nowych bialek a w szczegolnosci obecnosc leucyny.

Insulina informuje miesnie o zasobach energi (glukozy) – tylko dzieki insulinie
Z drugiej strony leucyna informuje miesnie o ilosci aminokwasow we krwi.
Nalezy jeszcze wspomniec ze tuz po zakonczonym treningu wzrasta poziom kortyzolu (kataboliczny hormon) – co jest kolejnym negatywem.
Ale rowniez wzrasta spoczynkowa przemiana materii (resting metabolic rate – RMR).

Nalezy rowniez pamietac o tym ze trening podnosi wrażliwośc insulinową komórek miesniowych!
Bardziej jestesmy wrazliwi i bardziej wykorzystamy weglowodany (i nie tylko) dzieki temu faktowi.
Rozwiazanie wszystkim tych problemow – z jednej strony zatrzymanie katabolizmu,uzupelnienie zasobow glikogenu,zmniejszenie poziomou kortyzolu – z drugiej strony nasilenie anabolizmu,wykorzystanie tymczasowej wiekszej wrazliwosci insulinowej mozna uczynic poprzez spozycie ‘napoju’ bialkowo-weglowodanowego.
Ew. takiego samego napoju z dadatkiem bcaa/leucyny lub kreatyny jesli obecnie jestesmy na cyklu kreatynowym.

Weglowodany – 0,8-1,2g/kgmc (glukoza,meltodextryny,vitargo- a najlepieuj mix szybkowchalnialnych weglowodanow)
Bialko – 0,4g/kgmc (izolat,hydrolizat,wpc – mieszanka)
BCAA – ok. 5-20g / lub leucyna – ok. 5g
Ponizej znajduje sie kilka badan potwierdzajacych te slowa:

Odnosnie bilansu bialkowego (bilans bialkowy=synteza bialka-rozpad bialka) – jak rowniez zasobow glikogenu po treningu:

Effects of resistance training on protein utilization in healthy children.

PURPOSE: Public health initiatives promote increased physical activity in children. More specifically, resistance training has recently received attention as an important component of youth fitness programs. The study examined the effect of this mode of exercise on protein utilization in young boys and girls.

METHODS: Healthy children (N = 11, 8.6 +/- 1.1 yr, 33.7 +/- 9.4 kg, 131 +/- 9.6 cm, BMI = 19.1 +/- 3.4) participated in a supervised resistance-training program 2 times.wk-1 for 6 wk. 15N glycine methodology was used to assess nitrogen flux (Q), protein synthesis (PS), protein breakdown (PB), and net turnover ([NET] = PS – PB) before (PRE) and after (POST) resistance training. Percent body fat (%BF), fat-free mass (FFM), fat mass (FM), and energy and protein intakes were also determined. PRE/POST measurements of 1RM for the chest press and leg extension were used to examine strength gains.

RESULTS: Gains associated with the chest press and leg extension were 10% and 75% (P < 0.001), respectively. Significant increases (P < 0.05) were noted for weight, height, FFM, and FM. Energy and protein intake remained constant. Significant decreases (PRE vs POST) were observed for Q (1.22 +/- 0.1 vs 0.75 +/- 0.05 gN.kg-1.d-1, P < 0.001), PS (6.48 +/- 0.47 vs 3.55 +/- 0.30 g.kg-1.d-1, P < 0.001), and PB (5.24 +/- 0.41 vs 2.96 +/- 0.30 g.kg-1.d-1, P < 0.01) after 6 wk of resistance training. NET was also reduced (P = 0.07, 1.24 +/- 0.31 vs 0.59 +/- 0.20 g.kg-1.d-1).

CONCLUSIONS: Resistance training resulted in a downregulation in protein metabolism, which may be energy based. Future studies are needed to clarify energy, as well as protein, needs in young children participating in this form of exercise.

[http://www.ncbi.nlm.nih.gov/pubmed/11984301]

po treningu zanotowano w porownaniu do stanu przed treningiem
-spadek syntezy bialka z 6,48 do 3,55
-spadek bilansu bialkowego z 0,59 do 0,07
Mixed muscle protein synthesis and breakdown after resistance exercise in humans.

Mixed muscle protein fractional synthesis rate (FSR) and fractional breakdown rate (FBR) were examined after an isolated bout of either concentric or eccentric resistance exercise. Subjects were eight untrained volunteers (4 males, 4 females). Mixed muscle protein FSR and FBR were determined using primed constant infusions of [2H5]phenylalanine and 15N-phenylalanine, respectively. Subjects were studied in the fasted state on four occasions: at rest and 3, 24, and 48 h after a resistance exercise bout. Exercise was eight sets of eight concentric or eccentric repetitions at 80% of each subject’s concentric 1 repetition maximum. There was no significant difference between contraction types for either FSR, FBR, or net balance (FSR minus FBR). Exercise resulted in significant increases above rest in muscle FSR at all times: 3 h = 112%, 24 h = 65%, 48 h = 34% (P < 0.01). Muscle FBR was also increased by exercise at 3 h (31%; P < 0.05) and 24 h (18%; P < 0.05) postexercise but returned to resting levels by 48 h. Muscle net balance was significantly increased after exercise at all time points [(in %/h) rest = -0.0573 +/- 0.003 (SE), 3 h = -0.0298 +/- 0.003, 24 h = -0.0413 +/- 0.004, and 48 h = -0.0440 +/- 0.005], and was significantly different from zero at all time points (P < 0.05). There was also a significant correlation between FSR and FBR (r = 0.88, P < 0.001). We conclude that exercise resulted in an increase in muscle net protein balance that persisted for up to 48 h after the exercise bout and was unrelated to the type of muscle contraction performed.

[http://www.ncbi.nlm.nih.gov/pubmed/9252485]

po 8 powtorzeniach badano wzrost rozpadu bailka:
po 3h 31%
po 24h 18%
po 48 – 0

jak rowniez bilans bialkowy:
po 3h -0.0573
po 24h -0.0413
po 48h -0.0440
Resistance training reduces the acute exercise-induced increase in muscle protein turnover.

We examined the effect of resistance training on the response of mixed muscle protein fractional synthesis (FSR) and breakdown rates (FBR) by use of primed constant infusions of [2H5]phenylalanine and [15N]phenylalanine, respectively, to an isolated bout of pleiometric resistance exercise. Trained subjects, who were performing regular resistance exercise (trained, T; n = 6), were compared with sedentary, untrained controls (untrained, UT; n = 6). The exercise test consisted of 10 sets (8 repetitions per set) of single-leg knee flexion (i.e., pleiometric muscle contraction during lowering) at 120% of the subjects’ predetermined single-leg 1 repetition maximum. Subjects exercised one leg while their contralateral leg acted as a nonexercised (resting) control. Exercise resulted in an increase, above resting, in mixed muscle FSR in both groups (UT: rest, 0.036 +/- 0.002; exercise, 0.0802 +/- 0.01; T: rest, 0.045 +/- 0.004; exercise, 0.067 +/- 0.01; all values in %/h; P < 0.01). In addition, exercise resulted in an increase in mixed muscle FBR of 37 +/- 5% (rest, 0.076 +/- 0.005; exercise, 0.105 +/- 0.01; all values in %/h; P < 0.01) in the UT group but did not significantly affect FBR in the T group. The resulting muscle net balance (FSR – FBR) was negative throughout the protocol (P < 0.05) but was increased in the exercised leg in both groups (P < 0.05). We conclude that pleiometric muscle contractions induce an increase in mixed muscle protein synthetic rate within 4 h of completion of an exercise bout but that resistance training attenuates this increase. A single bout of pleiometric muscle contractions also increased the FBR of mixed muscle protein in UT but not in T subjects.

[http://www.ncbi.nlm.nih.gov/pubmed/9886957]

wykonano 10 serii po 8 powtorzen knee flexion
-rozpad bialka wzrosl 37% po treningu

Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans .

The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60-65% of maximal one-leg power output, starting either with the normal-glycogen or the low-glycogen leg, at random. The net production of threonine, lysine and tyrosine and the sum of the non-metabolized amino acids were 9-20-fold higher (P<0.05) during exercise of the normal-glycogen leg than at rest. Total amino acid production was also 10-fold higher during exercise compared with that at rest (difference not significant). The net production rates of threonine, glycine and tyrosine and of the sum of the non-metabolized amino acids were about 1.5-2.5-fold higher during exercise with the leg with a low glycogen content compared with the leg with a normal glycogen content (P<0.05). Total amino acid production was 1.5-fold higher during exercise for the low-glycogen leg compared with the normal-glycogen leg (difference not significant). These data indicate that prolonged one-leg knee-extensor exercise leads to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate extracted in increased amounts from the blood during exercise, are used for the synthesis of glutamine and for tricarboxylic-acid cycle anaplerosis.

[http://www.ncbi.nlm.nih.gov/pubmed/10545306]

u grupy osob majacych male zasoby glikogenu – pula aminokwasow we krwi wynosily 150% wiecej niz u grupy z wiekszymi zasobami glikogenu
Effect of exercise and recovery on muscle protein synthesis in human subjects.

Previous studies using indirect means to assess the response of protein metabolism to exercise have led to conflicting conclusions. Therefore, in this study we have measured the rate of muscle protein synthesis in normal volunteers at rest, at the end of 4 h of aerobic exercise (40% maximal O2 consumption), and after 4 h of recovery by determining directly the rate of incorporation of 1,2-[13C]leucine into muscle. The rate of muscle protein breakdown was assessed by 3-methylhistidine (3-MH) excretion, and total urinary nitrogen excretion was also measured. There was an insignificant increase in 3-MH excretion in exercise of 37% and a significant increase (P less than 0.05) of 85% during 4 h of recovery from exercise (0.079 +/- 0.008 vs. 0.147 +/- 0.0338 mumol.kg-1.min-1 for rest and recovery from exercise, respectively). Nonetheless, there was no effect of exercise on total nitrogen excretion. Muscle fractional synthetic rate was not different in the exercise vs. the control group at the end of exercise (0.0417 +/- 0.004 vs. 0.0477 +/- 0.010%/h for exercise vs. control), but there was a significant increase in fractional synthetic rate in the exercise group during the recovery period (0.0821 +/- 0.006 vs. 0.0654 +/- 0.012%/h for exercise vs. control, P less than 0.05). Thus we conclude that although aerobic exercise may stimulate muscle protein breakdown, this does not result in a significant depletion of muscle mass because muscle protein synthesis is stimulated in recovery.

[http://www.ncbi.nlm.nih.gov/pubmed/2221048]

trening aerobowy moze stymulowac rozpad bialka
Muscle substrate utilization and lactate production.

Biopsies (biceps) were examined in 8 bodybuilders across a typical arm-curl training session (80% 1-RM). [PCr] and [glycogen] decreased 62 and 12% after 1 set (n = 4), and 50 and 24% after 3 sets (n = 4). [Lactate] was 91 and 118 mmol × kg-1, respectively, after 1 and 3 sets. Fatigue was probably partially caused by decreased [PCr] and increased [H+] (first set) and by decreased [H+] in subsequent sets.

[http://www.ncbi.nlm.nih.gov/pubmed/10364416]

1 seria uginan na biceps (4powtorzenie) moze zmniejszyc zasoby glikogenu o 12%
3serie uginan (3×4) moze zmniejszyc zasoby glikogenu 0 24%
Muscle metabolism during intense, heavy-resistance exercise.

 

The objective of this study was to examine the muscle metabolic changes occurring during intense and prolonged, heavy-resistance exercise. Muscle biopsies were obtained from the vastus lateralis of 9 strength trained athletes before and 30 s after an exercise regimen comprising 5 sets each of front squats, back squats, leg presses and knee extensions using barbell or variable resistance machines. Each set was executed until muscle failure, which occurred within 6-12 muscle contractions. The exercise: rest ratio was approximately 1:2 and the total performance time was 30 min. Concentrations of adenosine triphosphate (ATP), creatine phosphate (CP), creatine, glycogen, glucose, glucose-6-phosphate (G-6-P), alpha-glycerophosphate (alpha-G-P) and lactate were determined on freeze-dried tissue samples using fluorometric assays. Blood samples were analyzed for lactate and glucose. The exercise produced significant reductions in ATP (p less than 0.01) and CP (p less than 0.001), while alpha-G-P more than doubled (p less than 0.05), glucose increased tenfold (p less than 0.001) and G-6-P fourfold (p less than 0.001). Muscle lactate concentration at cessation of exercise averaged 17.3 mmol X kg-1 w. w. Glycogen concentration decreased (p less than 0.001) from 160 to 118 mmol X kg-1 w. w. It is concluded that high intensity, heavy resistance exercise is associated with a high rate of energy utilization through phosphagen breakdown and activation of glycogenolysis.
[http://www.ncbi.nlm.nih.gov/pubmed/3758035]

po 5 seriach przysiadow ze sztang trzymana z przodu,z tylu,wyciskania na suwnicy i wyprostowan – poziom glikogenu spadl z 160 do 118 mmol/kg
Glycogen resynthesis in skeletal muscle following resistive exercise.

The purpose of this investigation was to determine the influence of post-exercise carbohydrate (CHO) intake on the rate of muscle glycogen resynthesis after high intensity weight resistance exercise in subjects not currently weight training. In a cross-over design, eight male subjects performed sets (mean = 8.8) of six single leg knee extensions at 70% of one repetition max until 50% of full knee extension was no longer possible. Total force application was equated between trials using a strain gauge interfaced to a computer. The subjects exercised in the fasted state. Post-exercise feedings were administered at 0 and 1 h consisting of either a 23% CHO solution (1.5 g.kg-1) or an equal volume of water (H2O). Total force production, preexercise muscle glycogen content, and degree of depletion (-40.6 and -44.3 mmol.kg-1 wet weight) were not significantly different between H2O and CHO trials. As anticipated during the initial 2-h recovery, the CHO trial had a significantly greater rate of muscle glycogen resynthesis as compared with the H2O trial. The muscle glycogen content was restored to 91% and 75% of preexercise levels when water and CHO were provided after 6 h, respectively.

[http://www.ncbi.nlm.nih.gov/pubmed/8455450]

po 8 seriach po 6 powtorzen prostowan nog w siadzie poziom glikigenu spadl srednio o 40-43mmol/kg

***************************************

Takie zjawiska zachodzą po treningu.
Czy mozna temu zapobiec?
Tak!
Nie trenując wogole.

Niestety miesień musi zostac zniszczony aby pózniej powstal większy i mocniejszy!

Ale w tym nasz cel aby ten proces regeneracji czyli odbudowy mięsni jak i glikogenu przyspieszyc.

Aby tego dokonac zaraz po skonczeniu treningu nalezy spozyc napój weglowodanowo-bialkowy:
ok.0,8-1,2g/kgmc prostych weglowodanów (np.glukoza)
ok.0,4g/kmc ‘szybkich’ bialek (np. izolat)
+ ew. kilka gram bcaa/leucyny

Wtedy bedziemy mieli pewnosc ze procesy odnowy przyspieszymy i zmaxymalizujemy.

*******************************************

Kilka badan:
Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity

Ingestion of carbohydrate (CHO) and protein (PRO) following intense exercise has been reported to increase insulin levels, optimize glycogen resynthesis, enhance PRO synthesis, and lessen the immuno-suppressive effects of intense exercise. Since different forms of CHO have varying glycemic effects, the purpose of this study was to determine whether the type of CHO ingested with PRO following resistance-exercise affects blood glucose availability and insulin levels, markers of anabolism and catabolism, and/or general immune markers.
Methods
40 resistance-trained subjects performed a standardized resistance training workout and then ingested in a double blind and randomized manner 40 g of whey PRO with 120 g of sucrose (S), honey powder (H), or maltodextrin (M). A non-supplemented control group (C) was also evaluated. Blood samples were collected prior to and following exercise as well as 30, 60, 90, and 120 min after ingestion of the supplements. Data were analyzed by repeated measures ANOVA or ANCOVA using baseline values as a covariate if necessary.
Results
Glucose concentration 30 min following ingestion showed the H group (7.12 ą 0.2 mmol/L) to be greater than S (5.53 ą 0.6 mmol/L; p < 0.03); M (6.02 ą 0.8 mmol/L; p < 0.05), and C (5.44 ą 0.18 mmol/L; p < 0.0002) groups. No significant differences were observed among groups in glucose area under the curve (AUC) values, although the H group showed a trend versus control (p = 0.06). Insulin response for each treatment was significant by time (p < 0.0001), treatment (p < 0.0001) and AUC (p < 0.0001). 30-min peak post-feeding insulin for S (136.2 ą 15.6 uIU/mL), H (150.1 ą 25.39 uIU/mL), and M (154.8 ą 18.9 uIU/mL) were greater than C (8.7 ą 2.9 uIU/mL) as was AUC with no significant differences observed among types of CHO. No significant group × time effects were observed among groups in testosterone, cortisol, the ratio of testosterone to cortisol, muscle and liver enzymes, or general markers of immunity.
Conclusion
CHO and PRO ingestion following exercise significantly influences glucose and insulin concentrations. Although some trends were observed suggesting that H maintained blood glucose levels to a better degree, no significant differences were observed among types of CHO ingested on insulin levels. These findings suggest that each of these forms of CHO can serve as effective sources of CHO to ingest with PRO in and attempt to promote post-exercise anabolic responses

 

[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206056/]

po treningu 4 grupyz spozywalo rozne produkt:
-40g bialka + 120g sacharozy
-40g bialka + 120g proszku miodowego
-40g bialka + 120g maltodextrin
-placebo

wnioski:
w porownaniu do grupy placebo poziom glukozy byl znacznie wiekszy u pozostalych grup spozywajacych weglowodany – najwazszy u grupy spozywajacej bialko + miod w proszku (?)

Badanie

Poziom insuliny byl znacznie wiekszy we wszystkich grupsach w porownaniu do placebo – a najwiekszy w grupie spozywajacej maltodextryny.

Badanie

Poziom kortyzolu rowniez byl nizszy w kazdej grupie – oprocz grupy placebo (C).

Badanie

Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women.

We have previously demonstrated that women did not increase intramuscular glycogen in response to an increased percent of dietary carbohydrate (CHO) (from 60 to 75% of energy intake) (M. A. Tarnopolsky, S. A. Atkinson, S. M. Phillips, and J. D. MacDougall. J. Appl. Physiol. 78: 1360-1368, 1995). CHO and CHO-protein (Pro) supplementation postexercise can potentiate glycogen resynthesis compared with placebo (K. M. Zawadzki, B. B. Yaspelkis, and J. L. Ivy. J. Appl. Physiol. 72: 1854-1859, 1992). We studied the effect of isoenergetic CHO and CHO-Pro-Fat supplements on muscle glycogen resynthesis in the first 4 h after endurance exercise (90 min at 65% peak O2 consumption) in trained endurance athletes (men, n = 8; women, tested in midfollicular phase, n = 8). Each subject completed three sequential trials separated by 3 wk; a supplement was provided immediately and 1-h postexercise: 1) CHO (0.75 g/kg) + Pro (0.1 g/kg) + Fat (0.02 g/kg), 2) CHO (1 g/kg), and 3) placebo (Pl; artificial sweetener). Subjects were given prepackaged, isoenergetic, isonitrogenous diets, individualized to their habitual diet, for the day before and during the exercise trial. During exercise, women oxidized more lipid than did men (P < 0.05). Both of the supplement trials resulted in greater postexercise glucose and insulin compared with Pl (P < 0.01), with no gender differences. Similarly, both of these trials resulted in increased glycogen resynthesis (37.2 vs. 24. 6 mmol . kg dry muscle-1 . h-1, CHO vs. CHO-Pro-Fat, respectively) compared with Pl (7.5 mmol . kg dry muscle-1 . h-1; P < 0.001) with no gender differences. We conclude that postexercise CHO and CHO-Pro-Fat nutritional supplements can increase glycogen resynthesis to a greater extent than Pl for both men and women.

[http://www.ncbi.nlm.nih.gov/pubmed/9390958]

badano wplyw suplementacji okolotreningowej (przed+po) na poziom glikogenu
byly grupy:
-placebo
-grpa spozywajaca weglowodany 1g/kg
-grupa spozywajaca mix weglowodany 0,75g/kg + bialko 0,1g/kg + tluszcz 0,02g

 

wnioski:
-kobiety spolily wiecej tluszczu niz mezczyzni
-obie grupy w porownaniu do placebo mialy wiekszy poizom glukozy
-grupa spozywajaca weglowodany miala glikogen na poziomie 37
grupa spozywajaca mix na poziomie 27
a grupa placebo 7,5mmol

Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures.

BACKGROUND: Postexercise muscle glycogen synthesis is an important factor in determining the time needed to recover from prolonged exercise.

OBJECTIVE: This study investigated whether an increase in carbohydrate intake, ingestion of a mixture of protein hydrolysate and amino acids in combination with carbohydrate, or both results in higher postexercise muscle glycogen synthesis rates than does ingestion of 0.8 g*kg(-)(1)*h(-)(1) carbohydrate, provided at 30-min intervals.

DESIGN: Eight trained cyclists visited the laboratory 3 times, during which a control beverage and 2 other beverages were tested. After the subjects participated in a strict glycogen-depletion protocol, muscle biopsy samples were collected. The subjects received a beverage every 30 min to ensure ingestion of 0.8 g carbohydrate*kg(-)(1)*h(-)(1) (Carb trial), 0.8 g carbohydrate*kg(-)(1)*h(-)(1) plus 0.4 g wheat protein hydrolysate plus free leucine and phenylalanine*kg(-)(1)*h(-)(1) (proven to be highly insulinotropic; Carb + Pro trial), or 1.2 g carbohydrate*kg(-)(1)*h(-)(1) (Carb + Carb trial). After 5 h, a second biopsy was taken.

RESULTS: Plasma insulin responses in the Carb + Pro and Carb + Carb trials were higher than those in the Carb trial (88 +/- 17% and 46 +/- 18%; P < 0.05). Muscle glycogen synthesis was higher in both trials than in the Carb trial (35. 4 +/- 5.1 and 44.8 +/- 6.8 compared with 16.6 +/- 7.8 micromol glycosol units*g dry wt(-)(1)*h(-)(1), respectively; P < 0.05).

CONCLUSIONS: Addition of a mixture of protein hydrolysate and amino acids to a carbohydrate-containing solution (at an intake of 0.8 g carbohydrate*kg(-)(1)*h(-)(1)) can stimulate glycogen synthesis. However, glycogen synthesis can also be accelerated by increasing carbohydrate intake (0.4 g*kg(-)(1)*h(-)(1)) when supplements are provided at 30-min intervals.

[http://www.ncbi.nlm.nih.gov/pubmed/10871568]

byly 3 grupy spozywajace zaraz po treningu ktory wyplukal glikogen:
-spozywajaca 0,8g/kgmc weglowodanow
-spozywajaca 0,8 + o,4g weglowodanow (
-spozywajaca 0,8g weglowodanow + 0,4g bialka + leucyne

wnioski:
-poziom insuliny byl najwiekszy u grupy spozywajacej mix bialka + weglowodanow (88 vs. 46)
-synteza glikogenu byla najmniejsza w grupie spozywajacej 0,8g weglowodanow (16mmol) w prownaniu do grupy mix (35mmol) i grupy spozywajacej 1,2g wegli (45mmol)
Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis.

Although the importance of postexercise nutrient ingestion timing has been investigated for glycogen metabolism, little is known about similar effects for protein dynamics. Each subject (n = 10) was studied twice, with the same oral supplement (10 g protein, 8 g carbohydrate, 3 g fat) being administered either immediately (EARLY) or 3 h (LATE) after 60 min of moderate-intensity exercise. Leg blood flow and circulating concentrations of glucose, amino acids, and insulin were similar for EARLY and LATE. Leg glucose uptake and whole body glucose utilization (D-[6,6-2H(2)]glucose) were stimulated threefold and 44%, respectively, for EARLY vs. LATE. Although essential and nonessential amino acids were taken up by the leg in EARLY, they were released in LATE. Although proteolysis was unaffected, leg (L-[ring-2H(5)]phenylalanine) and whole body (L-[1-13C]leucine) protein synthesis were elevated threefold and 12%, respectively, for EARLY vs. LATE, resulting in a net gain of leg and whole body protein. Therefore, similar to carbohydrate homeostasis, EARLY postexercise ingestion of a nutrient supplement enhances accretion of whole body and leg protein, suggesting a common mechanism of exercise-induced insulin action.

[http://www.ncbi.nlm.nih.gov/pubmed/11350780]

badano wplyw ‘czasu’ kiedy zostanie spozyty posilek:
-zaraz po treningu
-3h po treningu

wnioski:
-w przypadku wypicia zaraz po treningu poziom glukozy byl o 44% wiekszy
-synteza bialka byla wieksza o 12%

Nutritional interventions to promote post-exercise muscle protein synthesis.

 

Resistance exercise is a powerful stimulus to augment muscle protein anabolism, as it can improve the balance between muscle protein synthesis and breakdown. However, the intake of food during post-exercise recovery is necessary for hypertrophy to occur. Therefore, athletes need to ingest protein following exercise to attain a positive protein balance and maximise their skeletal muscle adaptive response. The interaction between exercise and nutrition is not only important for athletes, but is also of important clinical relevance in the elderly. Exercise interventions combined with specific nutritional modulation provide an effective strategy to counteract or reduce the loss of skeletal muscle mass with aging.

[http://www.ncbi.nlm.nih.gov/pubmed/17887813]

spozywania bialka po treningu jest bardzo istatnym elelementem – w celu uzyskania pozytywnego bilansu bialkowego (zwiekszona synteza) tudziez do lepszej regeneracji powysilakowej
Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects.

The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of L-[ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 +/- 19% and +77 +/- 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial (P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials (P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 +/- 0.006 vs. 0.061 +/- 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 +/- 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.

[http://www.ncbi.nlm.nih.gov/pubmed/15562251]

3 grupy
-spozywajaca weglowodany
-spozywajaca weglowodany + bialko
-spozywajac weglowodany + bialko + leucyne

wnioski:
-poziom insuliny byl najwiekszy w grupie spozywajacej mix wegli+bialka+leucyny
Badanie

-rozpad bialka byl najwiekszy w grupie spozywajacej tylko weglowodany
-synteza bialka byla najwieszka w grupach spozywajacych mix
-bilans bilakowy w grupie spozywajecej tylko weglowdany byl ujemny,kiedy w grupach spozywajcych mix byl dodatni
-synteza bialka byla najwieksza w grupie spozywajacej wegle+bialko+leucyne (0,095),niz w grupie spozywajacej wegle + bialko (0,082) i wiecej niz w grupie spozywajcej same weglowodany (0,061) – gdzie byla najmniejsza

 

Badanie

Choc spozycie samego posilku/napoju weglowodanowego – nie powoduje pozytywnego bilansu bialkowego:
Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise

 

The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 ą 3 nmol·ml-1·100 ml leg-1 before drink to an average of -4 ą 4 and 0 ą 3 nmol·ml-1·100 ml leg-1 during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.

[jap.physiology.org/content/96/2/674.abstract?ijkey=4ac2bc6439a337078c4d5a1b8af87dc0116f6be4&keytype2=tf_ipsecsha]

 

dwie grupy
-placebo
-grupa spozywajaca 100g weglowodanow 1h po treningu

wnioski:
-poziom insuliny u grupy placebo nie zminil sie,kiedy u grupy pijacej weglowodany zmianial sie kilkakrotnie
-bilans bialkowy byl negatywny u grupy placebo jak i grupy weglowodanowej – ale u grupy weglowodanowej zmniejszyl sie z -17 do -4 (ale nadal pozostal negatywny)

********************************

wnioski koncowe:

Po treningu wzrasta zarowno synteza bialka – jak i jego degradacja.
Po treningu synteza bialka staje sie coraz wieksza – lecz przy braku pozywienia calkowity bilans bialkowy (synteza bilaka-rozpad bialka) jest nadal negatywny!
Jezeli po treningu spozyjemy tylko weglowodany/napoj weglowodanowy – podniesiemy poziom insuliny i uzupelnimy zasoby glikogenu – ale to wszystko!
Bilans bialkowy nadal pozostanie negatywny!
Bedzie ‘mniej’ negatywny niz w przypadku ‘nie jedzenia’ – ale nadal bedzie negatywny – czyli wiecej bedzie bialek degradowanych (niszczonych) niz zostanie wytworzonych.

Dopiero spozycie bialka z weglowodanami / ew. bialka z weglowodanami i leucyna zmniejszy rozpad bialka,zwiekszy syneteze i uzupelni zapasy glikogenu – czyli to co na czym nam zalezy po treningu!
Ten obrazek przedstawia to najlepiej

 

Badanie

CHO -grupa spozywajaca weglowodany
CHO+PRO -grupa spozywajaca weglowodany + bialko
CHO+PRO+LEU -grupa spozywajaca weglowodany + bialko + leucyne

katabolizm byl najwiekszy u grupy spozywajacej same weglowodany
kiedy to synteza byla najmniejsza – a bilans bilakowy negatywny

u grup spozywajacych weglowodany razem z bialkiem lub/i z leucyna – wyniki bylo porownywalne – a lekka przewaga grupy spozywajacej weglowodany + bialko + leucyne

Ktos napisze ze mozna to samo uzyskac bez weglowodanow – tak moze i mozna jesli jest sie na reduckji,czy na low carb wysoki poziom insuliny jest niewskazany czy spozycie weglowodanow.
Ale bedac ‘na masie’ – czy nawet na redukcji ale majac mozliwosc spozycia weglowodanow – ktore dzialajac synergicznie wraz z bialkiem/aminokwasami/leucyna podniosa jeszcze bardziej poziom insuliny w tym momencie (po treningu) nie polega tylko na:
– zwiększeniu transportu glukozy do komórek,
– zwiększeniu syntezy glikogenu ,
ale dziala glownie jako antykatabolik-powodujac:
– hamowanie rozpadu białek (katabolizmu) i ich zwiększona synteza,
– jak rowniez zwiększenie wychwytu aminokwasów – anabolizm -(im więcej aminokwasów zasiedli mięśnie, tym więcej zostanie wykorzystanych na potrzeby anabolizmu mięśniowego!).

Zapraszam do dyskusji na forum klikając TUTAJ

Autor: solaros (sfd)

Udostępnij znajomym

One thought on “Potreningowa suplementacja – okno anaboliczne

Pozostaw odpowiedź Kulturystyka Anuluj pisanie odpowiedzi

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *